Let k ≥ 0, and let n = k(2k + 1). Then we have:
n2 + (n+1)2 + ... + (n+k)2 = (n+k+1)2 + ... + (n+2k)2.
For example,
02 = 0,
32 + 42 = 52,
102 + 112 + 122 = 132 + 142,
212 + 222 + 232 + 242 = 252 + 262 + 272,
and so on.
Let k ≥ 0, and let n = k(2k + 1). Then we have:
n2 + (n+1)2 + ... + (n+k)2 = (n+k+1)2 + ... + (n+2k)2.
For example,
02 = 0,
32 + 42 = 52,
102 + 112 + 122 = 132 + 142,
212 + 222 + 232 + 242 = 252 + 262 + 272,
and so on.
No comments:
Post a Comment